

Exercise 2: Polymer Structure in Solution and Molecular Weight Determination

2.1: Consider an ideal polyethylene chain with molar mass $m = 10^7 \text{ g mol}^{-1}$. The mean-square end-to-end distance is given by

$$\langle h^2 \rangle = Nb^2 C_\infty$$

Assume the monomer length $b = 2.5 \text{ \AA}$, the coefficient $C_\infty = 6.0$, and the molar mass of the monomer $m_{\text{mon}} = 28 \text{ g mol}^{-1}$.

Estimate the root-mean-square end-to-end distance $\langle h^2 \rangle^{1/2}$ for the polymer chain.

What is the maximum length $R_{\text{max}} = bN$ of the same polyethylene chain?

2.2: An NMR experiment was performed on a solution of poly(vinyl alcohol) in water at 25°C to determine the polymer's diffusion coefficient. A value of $D = 1.22 \times 10^{-10} \text{ m}^2/\text{s}$ is found. Knowing that the viscosity of water at this temperature is $8.90 \times 10^{-4} \text{ kg m}^{-1}\text{s}^{-1}$, calculate R_H .

2.3: The following data were obtained for different solutions of a polymer in a membrane osmometer:

<u>c (g/L)</u>	<u>height difference measured (cm of solvent)</u>
3.2	0.70
6.6	1.82
10.0	3.10
14.0	5.44
19.0	9.3

The temperature is 25 °C and the solvent density is 0.85 g/ml. Determine the molecular weight and second Virial coefficient of this polymer solution. How could you get the theta temperature for this polymer solvent system?

2.4: In an Ubbelohde-viscosimeter the viscosity of a polymer solution liquid was measured. The average time for the solution to pass the capillary in the device was 100 seconds at 20°C. The capillary in the viscosimeter has a diameter of 0.8 mm and the volume that passed through the capillary during the measurement was 10 cm³. Calculate the kinematic viscosity of the solution! What additional information would you need to calculate the dynamic viscosity of the solution?

2.5: The following data were obtained for polystyrene solutions in butanone at 25 °C in viscosity measurements in an Ubbelohde viscosimeter

<u>conc (g/dL)</u>	<u>t (sec)</u>
0	65.8
0.54	101.2
1.08	144.3
1.62	194.6
2.16	257.0

Determine the intrinsic viscosity and the viscosity average molecular weight of the polymer knowing that K and a for this polymer are $0.039 \text{ cm}^3 \cdot \text{mol}^{1/2}/\text{g}^{3/2}$ and 0.58 respectively.